Learning with stochastic orders

Carles Domingo-Enrich^a, Yair Schiff^b and Youssef Mroueh^c ^aNew York University, ^bCornell University, ^c IBM Research AI

ICLR May, 2023

Generative adversarial networks

- The goal of generative modeling is to be able to generate artificial samples from a distribution given a sample (X_i)ⁿ_{i=1} from it.
- Generative adversarial networks (GANs) (Goodfellow et al., 2014) are a popular generative modeling technique where two deep neural networks, the generator *g* and the discriminator *f*, are trained adversarially.

Generative adversarial networks

- The goal of generative modeling is to be able to generate artificial samples from a distribution given a sample (X_i)ⁿ_{i=1} from it.
- Generative adversarial networks (GANs) (Goodfellow et al., 2014) are a popular generative modeling technique where two deep neural networks, the generator g and the discriminator f, are trained adversarially.
- A common choice for the training loss (Arjovsky et al., 2017) is:

$$\min_{g \in \mathcal{G}} \left\{ \max_{f \in \mathcal{F}} \{ \mathbb{E}_{X \sim \nu_n} [f(X)] - \mathbb{E}_{Y \sim \mu_0} [f(g(Y))] \} \right\}, \quad \text{where } \nu_n = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}.$$
(1)

• A usual failure mode of GANs is **mode collapse**: the generator fails to capture entire modes of the data distribution.

Figure 1: (*Left*) Samples from the MNIST dataset. (*Right*) GAN-generated samples suffering from mode collapse.

Generative adversarial networks

- The goal of generative modeling is to be able to generate artificial samples from a distribution given a sample (X_i)ⁿ_{i=1} from it.
- Generative adversarial networks (GANs) (Goodfellow et al., 2014) are a popular generative modeling technique where two deep neural networks, the generator g and the discriminator f, are trained adversarially.
- A common choice for the training loss (Arjovsky et al., 2017) is:

$$\min_{g \in \mathcal{G}} \left\{ \max_{f \in \mathcal{F}} \{ \mathbb{E}_{X \sim \nu_n}[f(X)] - \mathbb{E}_{Y \sim \mu_0}[f(g(Y))] \} \right\}, \quad \text{where } \nu_n = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}.$$
(1)

• A usual failure mode of GANs is **mode collapse**: the generator fails to capture entire modes of the data distribution.

Figure 1: (*Left*) Samples from the MNIST dataset. (*Right*) GAN-generated samples suffering from mode collapse.

• Question: How can we modify the GAN objective to prevent mode collapse? Let's look at stochastic orders first!

Stochastic orders

• Can we compare probability measures beyond equality? \implies stochastic orders

• Can we compare probability measures beyond equality? \implies stochastic orders

Definition (Convex or Choquet order, Ekeland and Schachermayer (2014)) For μ_-, μ_+ probability measures, we say that we say μ_+ dominates μ_- in the convex order, or $\mu_- \preceq_{cx} \mu_+$, if for any convex function $u : \mathbb{R}^d \to \mathbb{R}$, we have $\mathbb{E}_{x \sim \mu_-} u(x) \leq \mathbb{E}_{x \sim \mu_+} u(x).$ • Can we compare probability measures beyond equality? \implies stochastic orders

Definition (Convex or Choquet order, Ekeland and Schachermayer (2014)) For μ_-, μ_+ probability measures, we say that we say μ_+ dominates μ_- in the convex order, or $\mu_- \preceq_{cx} \mu_+$, if for any convex function $u : \mathbb{R}^d \to \mathbb{R}$, we have $\mathbb{E}_{x \sim \mu_-} u(x) \leq \mathbb{E}_{x \sim \mu_+} u(x).$

- \leq_{cx} is a partial order, meaning that reflexivity, antisymmetry and transitivity hold.
- The space of convex functions is not the only choice to define orders (other *cones* can be considered).

• Can we compare probability measures beyond equality? \implies stochastic orders

Definition (Convex or Choquet order, Ekeland and Schachermayer (2014)) For μ_-, μ_+ probability measures, we say that we say μ_+ dominates μ_- in the convex order, or $\mu_- \preceq_{cx} \mu_+$, if for any convex function $u : \mathbb{R}^d \to \mathbb{R}$, we have $\mathbb{E}_{x \sim \mu_-} u(x) \leq \mathbb{E}_{x \sim \mu_+} u(x).$

- \leq_{cx} is a partial order, meaning that reflexivity, antisymmetry and transitivity hold.
- The space of convex functions is not the only choice to define orders (other *cones* can be considered).
- The convex order in one dimension admits a characterization in terms of the integral of the CDF.

Proposition (Ekeland and Schachermayer (2014))

We have $\mu_{-} \leq_{cx} \mu_{+}$ if and only if there exists a martingale Markov kernel R (i.e. $\int_{\mathbb{R}^d} y \, dR_x(y) = x, \forall x$) such that $\mu_{-} = \int_{\mathbb{R}^d} R_x \, d\mu_{+}$.

Proposition (Ekeland and Schachermayer (2014))

We have $\mu_{-} \leq_{cx} \mu_{+}$ if and only if there exists a martingale Markov kernel R (i.e. $\int_{\mathbb{R}^{d}} y \, dR_{x}(y) = x, \forall x$) such that $\mu_{-} = \int_{\mathbb{R}^{d}} R_{x} \, d\mu_{+}$.

- This characterization is difficult to check, especially in high dimensions.
- Intuitively, this means that μ_{-} is more *spread out* than μ_{+} .

Variational Dominance Criterion (VDC)

Definition (Variational Dominance Criterion (VDC))

Given a bounded open convex subset $\Omega \subseteq \mathbb{R}^d$, a pair of Borel probability measures $\mu_+, \mu_- \in \mathcal{P}(\Omega)$, and a compact set $K \subseteq \mathbb{R}^d$ $(0 \in K)$, define:

$$\mathrm{VDC}_{\mathcal{A}}(\mu_+||\mu_-) = \sup_{u \in \mathcal{A}} \int_{\Omega} u \, d(\mu_- - \mu_+).$$

where $\mathcal{A} = \{ u : \Omega \to \mathbb{R}, u \text{ convex and } \nabla u \in K \text{ almost everywhere} \}.$

Remark that since $0 \in \mathcal{K}$, $VDC_{\mathcal{A}}(\mu_+||\mu_-) \ge 0$ for all μ_+, μ_- because the zero function belongs to the set \mathcal{A} .

Variational Dominance Criterion (VDC)

Definition (Variational Dominance Criterion (VDC))

Given a bounded open convex subset $\Omega \subseteq \mathbb{R}^d$, a pair of Borel probability measures $\mu_+, \mu_- \in \mathcal{P}(\Omega)$, and a compact set $K \subseteq \mathbb{R}^d$ $(0 \in K)$, define:

$$\mathrm{VDC}_\mathcal{A}(\mu_+||\mu_-) = \sup_{u\in\mathcal{A}}\int_\Omega u\,d(\mu_--\mu_+).$$

where $\mathcal{A} = \{ u : \Omega \to \mathbb{R}, u \text{ convex and } \nabla u \in K \text{ almost everywhere} \}.$

Remark that since $0 \in \mathcal{K}$, $VDC_{\mathcal{A}}(\mu_+||\mu_-) \ge 0$ for all μ_+, μ_- because the zero function belongs to the set \mathcal{A} .

Proposition

$$\mu_{-} \preceq_{cx} \mu_{+} \iff \operatorname{VDC}_{\mathcal{A}}(\mu_{+}||\mu_{-}) = 0$$

• Intuition: $VDC_{\mathcal{A}}(\mu_+||\mu_-) = 0 \iff \mathbb{E}_{x \sim \mu_-} u(x) \leq \mathbb{E}_{x \sim \mu_+} u(x)$ for all $u \in \mathcal{A}$ $\iff \mathbb{E}_{x \sim \mu_-} u(x) \leq \mathbb{E}_{x \sim \mu_+} u(x)$ for all u convex.

Variational Dominance Criterion (VDC)

Definition (Variational Dominance Criterion (VDC))

Given a bounded open convex subset $\Omega \subseteq \mathbb{R}^d$, a pair of Borel probability measures $\mu_+, \mu_- \in \mathcal{P}(\Omega)$, and a compact set $K \subseteq \mathbb{R}^d$ $(0 \in K)$, define:

$$\mathrm{VDC}_\mathcal{A}(\mu_+||\mu_-) = \sup_{u\in\mathcal{A}}\int_\Omega u\,d(\mu_--\mu_+).$$

where $\mathcal{A} = \{ u : \Omega \to \mathbb{R}, u \text{ convex and } \nabla u \in K \text{ almost everywhere} \}.$

Remark that since $0 \in \mathcal{K}$, $VDC_{\mathcal{A}}(\mu_{+}||\mu_{-}) \geq 0$ for all μ_{+}, μ_{-} because the zero function belongs to the set \mathcal{A} .

Proposition

$$\mu_{-} \preceq_{cx} \mu_{+} \iff \operatorname{VDC}_{\mathcal{A}}(\mu_{+}||\mu_{-}) = 0$$

- Intuition: $\operatorname{VDC}_{\mathcal{A}}(\mu_+||\mu_-) = 0 \iff \mathbb{E}_{x \sim \mu_-} u(x) \leq \mathbb{E}_{x \sim \mu_+} u(x)$ for all $u \in \mathcal{A}$ $\iff \mathbb{E}_{x \sim \mu_-} u(x) \leq \mathbb{E}_{x \sim \mu_+} u(x)$ for all u convex.
- Informally, the proposition implies that $VDC_A(\mu_+||\mu_-)$ is small when μ_+ is more spread out than μ_- , and large otherwise.

• **Problem**: Statistical rates of estimation of the VDC are cursed by dimension, i.e. $|\text{VDC}_{K}(\mu_{+}||\mu_{-}) - \text{VDC}_{K}(\mu_{+,n}||\mu_{-,n})| \lesssim Cn^{-2/d}$. The set of convex functions is too *large* (its Rademacher complexity scales like $n^{-2/d}$).

- **Problem**: Statistical rates of estimation of the VDC are cursed by dimension, i.e. $|\text{VDC}_{\kappa}(\mu_{+}||\mu_{-}) \text{VDC}_{\kappa}(\mu_{+,n}||\mu_{-,n})| \lesssim Cn^{-2/d}$. The set of convex functions is too *large* (its Rademacher complexity scales like $n^{-2/d}$).
- Idea: Approximate convex functions with bounded gradients using neural networks

- **Problem**: Statistical rates of estimation of the VDC are cursed by dimension, i.e. $|\text{VDC}_{\kappa}(\mu_{+}||\mu_{-}) \text{VDC}_{\kappa}(\mu_{+,n}||\mu_{-,n})| \lesssim Cn^{-2/d}$. The set of convex functions is too *large* (its Rademacher complexity scales like $n^{-2/d}$).
- Idea: Approximate convex functions with bounded gradients using neural networks
- Previous work: Input Convex Neural Networks (Amos et al., 2017). But we can do better in our setting!

- **Problem**: Statistical rates of estimation of the VDC are cursed by dimension, i.e. $|\text{VDC}_{\kappa}(\mu_{+}||\mu_{-}) \text{VDC}_{\kappa}(\mu_{+,n}||\mu_{-,n})| \lesssim Cn^{-2/d}$. The set of convex functions is too *large* (its Rademacher complexity scales like $n^{-2/d}$).
- Idea: Approximate convex functions with bounded gradients using neural networks
- Previous work: Input Convex Neural Networks (Amos et al., 2017). But we can do better in our setting!
- Idea: maximum of affine functions are good approximations of convex functions. Can we stack them in layers? Yes ⇒ Input Convex Maxout Networks.

Figure 2: Shallow maxout network. ICMNs are maxout networks with convex increasing activations such that all weights beyond the first layer are non-negative.

• $F_{L,\mathcal{M},k,+}(1)$: set of ICMNs with fixed architecture and bound on weights, such that $F_{L,\mathcal{M},k}(1) \subseteq \mathcal{A}$.

- $F_{L,\mathcal{M},k,+}(1)$: set of ICMNs with fixed architecture and bound on weights, such that $F_{L,\mathcal{M},k}(1) \subseteq \mathcal{A}$.
- We replace A = {u : Ω → ℝ, u convex and ∇u ∈ K a.e.} by F_{L,M,k}(1), and obtain the surrogate VDC:

$$\mathrm{VDC}_{F_{L,\mathcal{M},k,+}(1)}(\mu_{+}||\mu_{-}) = \sup_{u \in F_{L,\mathcal{M},k,+}(1)} \int_{\Omega} u \, d(\mu_{-} - \mu_{+}).$$
(2)

- $F_{L,\mathcal{M},k,+}(1)$: set of ICMNs with fixed architecture and bound on weights, such that $F_{L,\mathcal{M},k}(1) \subseteq \mathcal{A}$.
- We replace A = {u : Ω → ℝ, u convex and ∇u ∈ K a.e.} by F_{L,M,k}(1), and obtain the surrogate VDC:

$$\mathrm{VDC}_{F_{L,\mathcal{M},k,+}(1)}(\mu_{+}||\mu_{-}) = \sup_{u \in F_{L,\mathcal{M},k,+}(1)} \int_{\Omega} u \, d(\mu_{-} - \mu_{+}).$$
(2)

- The surrogate VDC solves two problems at once:
 - It enjoys parametric estimation rates:
 - $|\mathrm{VDC}_{F_{L,\mathcal{M},k,+}(1)}(\mu_{+}||\mu_{-}) \mathrm{VDC}_{F_{L,\mathcal{M},k,+}(1)}(\mu_{+,n}||\mu_{-,n})| \lesssim Cn^{-1/2}.$
 - We can use gradient descent to solve the variational problem (2) (no guarantees, but it works in practice).

• We take a base generator g_0 trained using the baseline GAN training loss, and consider the problem:

$$\min_{g \in \mathcal{G}} \left\{ \max_{f \in \mathcal{F}} \{ \mathbb{E}_{X \sim \nu_n}[f(X)] - \mathbb{E}_{Y \sim \mu_0}[f(g(Y))] \} + \lambda \text{VDC}_{F_{L,\mathcal{M},k,+}(1)}(g_{\#\mu_0}||(g_0)_{\#\mu_0}) \right\}.$$
(3)

Here $g_{\#}\mu_0$ is the distribution of the generated samples g(X), $X \sim \mu_0$.

 That is, we add the surrogate VDC between the learned and the baseline distribution: we want to bias g_#μ₀ to be more spread-out than (g₀)_#μ₀.

Mode collapse mitigation: mixture of Gaussians

- The target μ_r is a mixture of 8 gaussians in two dimensions
- g0 is a mode collapsed generator
- g^* is trained with WGAN-GP penalized with the surrogate VDC.

Mode collapse mitigation: mixture of Gaussians

- The target μ_r is a mixture of 8 gaussians in two dimensions
- g0 is a mode collapsed generator
- g^* is trained with WGAN-GP penalized with the surrogate VDC.

Figure 3: Probing mode collapse for GAN training. A converged generator needs to have a low negative likelihood and low mode collapse score. Collapse score: KL divergence between the discrete distribution obtained by assignment to closest centroid, and uniform distribution.

GAN experiments in high dimensions

Table 1: FID scores for WGAN-GP and WGAN-GP with VDC surrogate for convex functions approximated by either ICNNs with softplus activations or ICMNs, on the CIFAR-10 dataset. ICMNs improve upon the baseline g_0 and outperform ICNNs with softplus. FID score for WGAN-GP + VDC includes mean values \pm one standard deviation for 5 repeated runs with different random initialization seeds.

	FID
g ₀ : WGAN-GP	69.67
g*: WGAN-GP + VDC CP-Flow ICNN	83.470 ± 3.732
g^* : WGAN-GP + VDC ICMN (Ours)	67.317 ± 0.776

- Portfolio optimization (Post et al., 2018; Xue et al., 2020): The goal is to find a
 portfolio G₂ that enhances a benchmark portfolio G₁ in a certain way: the return
 of G₂ must have high expectation, but its distribution must be less spread out
 than for G₁—less risk.
- Distributional reinforcement learning (Martin et al., 2020): We want to learn policies with dominance constraints on the distribution of the reward.

Thank you!

Contacts: cd2754@nyu.edu, yzs2@cornell.edu, mroueh@us.ibm.com

References i

- Amos, B., Xu, L., and Kolter, J. Z. (2017). Input convex neural networks. In Proceedings of the 34th International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages 146–155. PMLR.
- Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein gan. arXiv preprint arXiv:1701.07875.
- Ekeland, I. and Schachermayer, W. (2014). Optimal transport and the geometry of $L^1(\mathbb{R}^d)$. Proceedings of the American Mathematical Society, 142.
- Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Advances in Neural Information Processing Systems, pages 2672–2680.
- Martin, J. D., Lyskawinski, M., Li, X., and Englot, B. (2020). Stochastically dominant distributional reinforcement learning. In *Proceedings of the 37th International Conference on Machine Learning*, ICML'20. JMLR.org.
- Post, T., Karabati, S., and Arvanitis, S. (2018). Portfolio optimization based on stochastic dominance and empirical likelihood. *Journal of Econometrics*, 206(1):167–186.
- Xue, M., Shi, Y., and Sun, H. (2020). Portfolio optimization with relaxation of stochastic second order dominance constraints via conditional value at risk. *Journal* of Industrial and Management Optimization, 16(6):2581–2602.