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Generative adversarial networks

• The goal of generative modeling is to be able to generate artificial samples from a
distribution given a sample (Xi )

n
i=1 from it.

• Generative adversarial networks (GANs) (Goodfellow et al., 2014) are a popular
generative modeling technique where two deep neural networks, the generator g

and the discriminator f , are trained adversarially.

• A common choice for the training loss (Arjovsky et al., 2017) is:

min
g∈G

{
max
f∈F

{EX∼νn [f (X )]− EY∼µ0 [f (g(Y ))]}
}
, where νn =

1
n

n∑
i=1

δxi . (1)

• A usual failure mode of GANs is mode collapse: the generator fails to capture
entire modes of the data distribution.

Figure 1: (Left) Samples from the MNIST dataset. (Right) GAN-generated samples
suffering from mode collapse.

• Question: How can we modify the GAN objective to prevent mode collapse?
Let’s look at stochastic orders first!
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Stochastic orders

• Can we compare probability measures beyond equality? =⇒ stochastic orders

Definition (Convex or Choquet order, Ekeland and Schachermayer (2014))
For µ−, µ+ probability measures, we say that we say µ+ dominates µ− in the convex
order, or µ− ⪯cx µ+, if for any convex function u : Rd → R, we have

Ex∼µ−u(x) ≤ Ex∼µ+u(x).

• ⪯cx is a partial order, meaning that reflexivity, antisymmetry and transitivity hold.

• The space of convex functions is not the only choice to define orders (other cones
can be considered).

• The convex order in one dimension admits a characterization in terms of the
integral of the CDF.
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Stochastic orders in terms of Markov kernels

Proposition (Ekeland and Schachermayer (2014))
We have µ− ⪯cx µ+ if and only if there exists a martingale Markov kernel R ( i.e.∫
Rd y dRx (y) = x , ∀x) such that µ− =

∫
Rd Rx dµ+.

• This characterization is difficult to check, especially in high dimensions.

• Intuitively, this means that µ− is more spread out than µ+.
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Variational Dominance Criterion (VDC)

Definition (Variational Dominance Criterion (VDC))

Given a bounded open convex subset Ω ⊆ Rd , a pair of Borel probability measures
µ+, µ− ∈ P(Ω), and a compact set K ⊆ Rd (0 ∈ K), define:

VDCA(µ+||µ−) = sup
u∈A

∫
Ω
u d(µ− − µ+).

where A = {u : Ω → R, u convex and ∇u ∈ K almost everywhere}.

Remark that since 0 ∈ K, VDCA(µ+||µ−) ≥ 0 for all µ+, µ− because the zero
function belongs to the set A.

Proposition

µ− ⪯cx µ+ ⇐⇒ VDCA(µ+||µ−) = 0

• Intuition: VDCA(µ+||µ−) = 0 ⇐⇒ Ex∼µ−u(x) ≤ Ex∼µ+u(x) for all u ∈ A
⇐⇒ Ex∼µ−u(x) ≤ Ex∼µ+u(x) for all u convex.

• Informally, the proposition implies that VDCA(µ+||µ−) is small when µ+ is more
spread out than µ−, and large otherwise.
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Input Convex Maxout Networks

• Problem: Statistical rates of estimation of the VDC are cursed by dimension, i.e.
|VDCK (µ+||µ−)− VDCK (µ+,n||µ−,n)| ≲ Cn−2/d . The set of convex functions
is too large (its Rademacher complexity scales like n−2/d ).

• Idea: Approximate convex functions with bounded gradients using neural networks
• Previous work: Input Convex Neural Networks (Amos et al., 2017). But we can

do better in our setting!
• Idea: maximum of affine functions are good approximations of convex functions.

Can we stack them in layers? Yes =⇒ Input Convex Maxout Networks.

!
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Figure 2: Shallow maxout network. ICMNs are maxout networks with convex increasing
activations such that all weights beyond the first layer are non-negative.
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Surrogate VDC via ICMNs

• FL,M,k,+(1): set of ICMNs with fixed architecture and bound on weights, such
that FL,M,k (1) ⊆ A.

• We replace A = {u : Ω → R, u convex and ∇u ∈ K a.e.} by FL,M,k (1), and
obtain the surrogate VDC:

VDCFL,M,k,+(1)(µ+||µ−) = sup
u∈FL,M,k,+(1)

∫
Ω
u d(µ− − µ+). (2)

• The surrogate VDC solves two problems at once:

− It enjoys parametric estimation rates:
|VDCFL,M,k,+(1)(µ+||µ−)− VDCFL,M,k,+(1)(µ+,n||µ−,n)| ≲ Cn−1/2.

− We can use gradient descent to solve the variational problem (2) (no
guarantees, but it works in practice).
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Training GANs with surrogate VDC penalization

• We take a base generator g0 trained using the baseline GAN training loss, and
consider the problem:

min
g∈G

{
max
f∈F

{EX∼νn [f (X )]− EY∼µ0 [f (g(Y ))]}+λVDCFL,M,k,+(1)(g#µ0||(g0)#µ0)

}
.

(3)
Here g#µ0 is the distribution of the generated samples g(X ), X ∼ µ0.

• That is, we add the surrogate VDC between the learned and the baseline
distribution: we want to bias g#µ0 to be more spread-out than (g0)#µ0.
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Mode collapse mitigation: mixture of Gaussians

• The target µr is a mixture of 8 gaussians in two dimensions

• g0 is a mode collapsed generator

• g∗ is trained with WGAN-GP penalized with the surrogate
VDC.

Figure 3: Probing mode collapse for GAN training. A converged generator needs to have a low
negative likelihood and low mode collapse score. Collapse score: KL divergence between the
discrete distribution obtained by assignment to closest centroid, and uniform distribution.
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GAN experiments in high dimensions

Table 1: FID scores for WGAN-GP and WGAN-GP with VDC surrogate for convex functions
approximated by either ICNNs with softplus activations or ICMNs, on the CIFAR-10 dataset.
ICMNs improve upon the baseline g0 and outperform ICNNs with softplus. FID score for
WGAN-GP + VDC includes mean values ± one standard deviation for 5 repeated runs with
different random initialization seeds.

FID

g0: WGAN-GP 69.67
g∗: WGAN-GP + VDC CP-Flow ICNN 83.470 ± 3.732
g∗: WGAN-GP + VDC ICMN (Ours) 67.317 ± 0.776

Figure 4: g∗ CIFAR-10 samples
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Other potential applications of our framework

• Portfolio optimization (Post et al., 2018; Xue et al., 2020): The goal is to find a
portfolio G2 that enhances a benchmark portfolio G1 in a certain way: the return
of G2 must have high expectation, but its distribution must be less spread out
than for G1—less risk.

• Distributional reinforcement learning (Martin et al., 2020): We want to learn
policies with dominance constraints on the distribution of the reward.
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Thank you!

Contacts: cd2754@nyu.edu, yzs2@cornell.edu, mroueh@us.ibm.com
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