Semi-Parametric Inducing **Point Networks and Neural Processes** Module Richa Rastogi, Yair Schiff, Alon Hacohen, Zhaozhi Li, Ian Lee, Yuntian Deng, Mert R. Sabuncu, Volodymyr Kuleshov

Semi-parametric setup:

We have access to training set at inference time:

$$\mathcal{D}_{train} = \{ \mathbf{x}^{(i)}, \mathbf{y}^{(i)} \}_{i=1}^{n}$$

 Goal is to learn parametric mapping conditioned on this dataset:

 $\boldsymbol{y} = f_{\boldsymbol{\theta}}(\boldsymbol{x} \mid \mathcal{D}_{train})$

Most **parametric models scale superlinearly** in size of dataset (e.g., Transformers¹ scale quadratically).

Meta-learning tasks benefit from conditioning on **larger contexts.**

1. Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

Motivating example: Parametric models are poor fit for large genome sequence imputation and cannot scale to larger reference datasets

Semi-Parametric Inducing Point Networks Linear time and space complexity in the size and the dimension of the data during training.

Neural Processes architecture that supports larger context sizes.

State-of-the-art results on genotype imputation task.

SPIN Overview

Image credit: https://www.geeksforgeeks.org/ml-k-means-algorithm/

<u>Cross-Attention Between Attributes (XABA)</u>: Reduce dimensionality of datapoints

(Self-)<u>Attention Between Latent Attributes (ABLA)</u>: Enables inducing points to refine internal representations

<u>Cross-Attention Between Datapoints (XABD)</u>: Generate inducing points that reduce context size

We stack multiple SPIN layers to form the complete Dataset Encoder

Predictor Module: Query refined inducing points; computation is <u>constant</u> <u>time</u> with respect to reference dataset size

Applying SPIN to Neural Processes...

Fig. 5 High level computational graph of the Neural Process Family.

Image credit: Dubois, Yann and Gordon, Jonathan and Foong, Andrew YK. "Neural Process Family." (2020). http://yanndubs.github.io/Neural-Process-Family

Inducing Point Neural Processes (IPNP)

IPNP better scales to larger contexts

SOTA results on genome imputation

Table 3: Performance Summary on Genomic Sequence Imputation. (*) represents parametric models. A difference of 0.5% is statistically significant at pvalue 0.05.

19 <u></u>			-			
GB	BT* MLP*	KNN	Beagle	NPT-16	Set-TF-16	SPIN-16
Pearson $R^2 \uparrow 87$.63 95.31	89.70	95.64	95.84 ± 0.06	95.97±0.09	95.92 ± 0.12
Param Count↓ ·	- 65M	-	-	16.7M	33.4M	8.1M

SPIN outperforms state-of-the-art, widely adopted software (Beagle) and is more efficient than alternative Transformer-based approaches (NPT, Set-TF)

Summary

- SPIN is linear time and space complexity in the size and the dimension of the data.
- IPNP is uncertainty aware, meta-learning algorithm that scales to larger context sizes.
- SPIN achieves state-of-the-art results on genome imputation task.

