About Me

profile_pictures

I'm a third year PhD student in the Computer Science department at Cornell University where I am fortunate to be working with Prof. Volodymyr Kuleshov.

Here is my full CV.

Research

My research interests include Generative modeling, Optimal transport, and AI for discovery & social good.

Publications

  • Simple and Effective Masked Diffusion Language Models
    Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin T Chiu, Alexander Rush, Volodymyr Kuleshov
    NeurIPS 2024
    [Paper] , [Site] , [Code]
  • Auditing and Generating Synthetic Data with Controllable Trust Trade-offs
    Brian Belgodere, Pierre Dognin, Adam Ivankay, Igor Melnyk, Youssef Mroueh, Aleksandra Mojsilovic, Jiri Navartil, Apoorva Nitsure, Inkit Padhi, Mattia Rigotti, Jerret Ross, Yair Schiff, Radhika Vedpathak, Richard A. Young
    IEEE Journal on Emerging and Selected Topics in Circuits and Systems
    [Paper]
  • Caduceus: Bi-Directional Equivariant Long-Range DNA Sequence Modeling
    Yair Schiff, Chia-Hsiang Kao, Aaron Gokaslan, Tri Dao, Albert Gu, Volodymyr Kuleshov
    ICML 2024
    [Paper] , [Site] , [Code] , [Slides] , [Video]
  • DySLIM: Dynamics Stable Learning by Invariant Measure for Chaotic Systems
    Yair Schiff, Zhong Yi Wan, Jeffrey B. Parker, Stephan Hoyer, Volodymyr Kuleshov, Fei Sha, Leonardo Zepeda-Núñez
    ICML 2024
    [Paper] , [Code] , [Slides] , [Video]
  • InfoDiffusion: Representation Learning Using Information Maximizing Diffusion Models
    Yingheng Wang, Yair Schiff, Aaron Gokaslan, Weishen Pan, Fei Wang, Christopher De Sa, Volodymyr Kuleshov
    ICML 2023
    [Paper] , [Video]
  • Semi-Autoregressive Energy Flows: Exploring Likelihood-Free Training of Normalizing Flows
    Phillip Si, Zeyi Chen, Subham Sekhar Sahoo, Yair Schiff, Volodymyr Kuleshov
    ICML 2023
    [Paper] , [Video]
  • Learning with Stochastic Orders
    Carles Domingo-Enrich, Yair Schiff, Youssef Mroueh
    ICLR 2023 , Notable Top 25% acceptance
    [Paper] , [Code] , [Slides] , [Video]
  • Semi-Parametric Inducing Point Networks and Neural Processes
    Richa Rastogi, Yair Schiff, Alon Hacohen, Zhaozhi Li, Ian Lee, Yuntian Deng, Mert R. Sabuncu, Volodymyr Kuleshov
    ICLR 2023
    [Paper] , [Code] , [Slides] , [Video]
  • Cloud-Based Real-Time Molecular Screening Platform with MolFormer
    Brian Belgodere*, Vijil Chenthamarakshan*, Payel Das*, Pierre Dognin*, Toby Kurien*, Igor Melnyk*, Youssef Mroueh*, Inkit Padhi*, Mattia Rigotti*, Jarret Ross*, Yair Schiff*, Richard A. Young* (*equal contribution, alphabetical order)
    ECML PKDD 2022 Demo Track
    [Paper]
  • Optimizing Functionals on the Space of Probabilities with Input Convex Neural Networks
    David Alvarez-Melis, Yair Schiff, Youssef Mroueh
    Transactions of Machine Learning Research
    OTML NeurIPS Workshop 2021, Spotlight presentation

    [Paper] , [Code] , [Slides] , [Video]
  • Augmenting Molecular Deep Generative Models with Topological Data Analysis Representations
    Yair Schiff*, Vijil Chenthamarakshan*, Samuel Hoffman*, Karthikeyan Natesan Ramamurthy*, Payel Das* (*equal contribution)
    ICASSP 2022
    [Paper]
  • Predicting Deep Neural Network Generalization with Perturbation Response Curves
    Yair Schiff, Brian Quanz, Payel Das, Pin-Yu Chen
    NeurIPS 2021
    [Paper] , [Slides] , [Video]
  • Tabular Transformers for Modeling Multivariate Time Series
    Inkit Padhi, Yair Schiff, Igor Melnyk, Mattia Rigotti, Youssef Mroueh, Pierre Dognin, Jarret Ross, Ravi Nair, Erik Altman
    ICASSP 2021
    [Paper] , [Code]
  • Image Captioning as an Assistive Technology: Lessons Learned from VizWiz 2020 Challenge
    Pierre Dognin*, Igor Melnyk*, Youssef Mroueh*, Inkit Padhi*, Mattia Rigotti*, Jarret Ross*, Yair Schiff*, Richard Young, Brian Belgodere (*equal contribution)
    Journal of AI Research
    [Paper] , [Slides]

Workshops

  • Advancing DNA Language Models: The Genomics Long-Range Benchmark
    Evan Trop, Chia-Hsiang Kao, Mckinley Polen, Yair Schiff, Bernardo P. de Almeida, Aaron Gokaslan, Thomas Pierrot, Volodymyr Kuleshov
    LLMs4Bio AAAI Workshop 2024,  MLGenX ICLR Workshop 2024
    [Paper]
  • Gi and Pal Scores: Deep Neural Network Generalization Statistics
    Yair Schiff, Brian Quanz, Payel Das, Pin-Yu Chen
    RobustML ICLR Workshop 2021
    [Paper]
  • Characterizing the Latent Space of Molecular Deep Generative Models
    Yair Schiff, Vijil Chenthamarakshan, Karthikeyan Natesan Ramamurthy, Payel Das
    TDA & Beyond NeurIPS Workshop 2020 , Spotlight presentation
    [Paper] , [Slides] , [Video]
  • Alleviating Noisy Data in Image Captioning with Cooperative Distillation
    Pierre Dognin*, Igor Melnyk*, Youssef Mroueh*, Inkit Padhi*, Mattia Rigotti*, Jarret Ross*, Yair Schiff* (*equal contribution, alphabetical order)
    VizWiz CVPR Workshop 2020
    [Paper] , [Slides]

Preprints

  • Cross-species plant genomes modeling at single nucleotide resolution using a pre-trained DNA language model
    Jingjing Zhai, Aaron Gokaslan, Yair Schiff, Ana Berthel, Zong-Yan Liu, Zachary R Miller, Armin Scheben, Michelle C Stitzer, Cinta Romay, Edward S. Buckler, Volodymyr Kuleshov
    [Paper]